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1 Data Augmentation

We apply the following data corruption techniques when training our skeletal
transformer to increase its robustness to different noise sources that are often
seen in 3D keypoints estimation algorithms:
Masking. We apply random masking on each joint with a 20% chance to model
partially occluded inputs, simulating scenarios where joints are not visible or
considered outliers. For this task, we exploit the inner mechanics of transformers
by masking the attention of the occluded joints in the encoder and between the
encoder and decoders.
Rotation. We randomly rotate the 3D keypoints around the mid-hip point
to simulate various orientations of the human body. Specifically, we rotate the
points by ±180◦ along the vertical axis to enhance the model’s ability to predict
the root rotation accurately. Additionally, we occasionally rotate the body by
90° to simulate lying and sleeping postures, which are often considered chal-
lenging in markerless motion capture applications.
Noise Addition. To model the faulty predictions in the 3D keypoint estimation
module, we add random Gaussian noise with a standard deviation proportional
to 5% of the joint annotation confidences provided for COCO WholeBody [1].
Left-Right Mirroring. We increase the robustness of our model to mediolateral
flips by mirroring the keypoints along the YZ plane by 50% chance. Since the
SMPL model is not symmetrical, we apply the mirroring directly on the inputs
and the output of the model before the SMPL Forward Kinematics (FK) layer.
Shape Augmentation. Although the AMASS [2] training set has a large vari-
ety of common and exotic poses, it lacks body shape variety and includes only
300 different body shapes. To mitigate this issue, we randomly augment the body
shape parameters before keypoint corruption by an additive Gaussian noise with
a standard deviation equal to the standard deviation of all available body shapes.
Outliers. A common noise source in 3D triangulation pipelines is heavy 2D
keypoint shifts caused by faulty detection in one or more views. Therefore, a
straightforward approach is to consider such heavy shifts as outliers and mask
those inputs in the network. However, the outlier detection algorithms might fail
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to detect such instances. To increase the robustness of our model to such noises,
we apply a large additive Gaussian noise with a standard deviation of 1 meter
to each keypoint with a chance of 1% during training to increase the robustness
of our model to outliers.

2 Additional Qualitative Assessment

We present a qualitative assessment of our model to Out-of-Distribution (OoD)
data to highlight our model’s robustness and generalization. In Fig. 1, we show-
case the visual fidelity of SkelFormer by presenting more images on public
datasets alongside a proprietary dataset that uses 6 GoPro cameras. These videos
include a running sequence in a large volume and a dying and sitting sequence
in a small volume.

Figure 2 visualizes SkelFormer’s fitting capabilities in noisy and occlusion
experiments on the sequences with its highest error from AMASS [2] testing set.
Interestingly, in very noisy circumstances, the model tries to predict a plausible
pose while adhering to the input as much as possible. It also generates viable and
relaxed poses in the end-point experiments. Consistent with our results, we see
almost no changes to the prediction in the presence of occlusions. Please refer to
our video demo for more animations containing noise and occlusion experiments
and a comparison to VPoser-t.

3 Supplementary Video

We provide a supplementary video describing our solution with visual examples.
Our video contains several clips on Human3.6m [3], RICH [4], and our propri-
etary dataset. We also compare our work with the pseudo ground truth [5] and
show better image alignment on the Human3.6m dataset.
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Fig. 1: Sample results on Human3.6m, MPI-INF-3DHP, and our collected videos are
presented.
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Fig. 2: We demonstrate the predictions of SkelFormer on its worst-performing se-
quences during the occlusion and noise experiments. The red points represent the
model’s inputs.
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