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Abstract. We introduce SkelFormer, a novel markerless motion cap-
ture pipeline for multi-view human pose and shape estimation. Our
method first uses off-the-shelf 2D keypoint estimators, pre-trained on
large-scale in-the-wild data, to obtain 3D joint positions. Next, we design
a regression-based inverse-kinematic skeletal transformer that maps the
joint positions to pose and shape representations from heavily noisy ob-
servations. This module integrates prior knowledge about pose space and
infers the full pose state at runtime. Separating the 3D keypoint detec-
tion and inverse-kinematic problems, along with the expressive represen-
tations learned by our skeletal transformer, enhance the generalization of
our method to unseen noisy data. We evaluate our method on three pub-
lic datasets in both in-distribution and out-of-distribution settings and
observe better performance than prior works. Moreover, ablation experi-
ments demonstrate the impact of each of the modules of our architecture.
Finally, we study the performance of our method in dealing with noise
and heavy occlusions and find considerable robustness with respect to
other solutions. Supplementary materials and demonstration video avail-
able at https://vdavoodnia.github.io/projects/skelformer/.

Keywords: Markerless Motion Capture · Multi-view Human Pose Es-
timation · Inverse-kinematics · Skeletal Transformers

1 Introduction

Motion capture is an active field of research with applications in sports, enter-
tainment, health, and human-computer interaction. Currently, optical motion
capture technology offers the most reliable and accurate solution by using a
large number of cameras that detect markers attached to the actor’s body. As a
result, optical motion capture is costly and has a time-consuming setup process,
preventing its practical application in low-budget or outdoor settings. In con-
trast, markerless optical motion capture offers a more convenient and portable
solution for capturing the pose, generally at the cost of accuracy. Therefore, a
significant amount of research has been dedicated to improving markerless mo-
tion capture in recent years, delivering high-quality animations by using only a
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few RGB cameras [1, 2]. Yet, markerless approaches either take a long time to
process, e.g., 6 minutes for a 30-second video [3], or they struggle to perform well
in in-the-wild environments [4]. Optimization-based solutions that fit a paramet-
ric model to the detected keypoints often exhibit long run-times, while regression
models trained on controlled and in-studio datasets lack generalization due to
low-diversity backgrounds, appearance, and lighting conditions [5].

In this paper, we propose a novel pipeline for markerless motion capture,
which we name SkelFormer. At a high level, SkelFormer consists of two main
modules: a 3D keypoint estimator and a skeletal transformer. First, to simplify
3D keypoint detection while maintaining generalizability to a wider distribution
of scenarios, our method uses a Direct-Linear-Transformation (DLT) [6] triangu-
lation method on the output of off-the-shelf 2D keypoint estimators trained on
in-the-wild data. Next, we propose a skeletal transformer motivated by Inverse-
Kinematics (IK) approaches to generate body pose and shape parameters rather
than relying on the commonly used optimization methods. This module signif-
icantly reduces computational overhead while exhibiting more accurate perfor-
mance. However, the misalignment between the estimated 3D keypoints and the
body joint configuration of motion capture data makes the integration of key-
point estimators and our IK module challenging. To address this, we propose a
simple joint regressor, trained on a small set of synthetic, and use it to generate
synthetic keypoints from motion capture data that are aligned with 2D keypoint
estimators. Lastly, we apply several augmentations on the acquired keypoints
and train our IK component using the noisy data.

To rigorously test the performance of our method, we evaluate SkelFormer in
both In-Distribution (InD) and Out-of-Distribution (OoD) settings against prior
works while noting that most previous works have been tested in InD settings.
Next, detailed ablation experiments demonstrate the impact of each component.
Finally, we study the performance of our method and examine its robustness to
highly noisy and occluded data.

In summary, we propose SkelFormer, a regression-based IK solution that
converts 3D body keypoint positions to a full-body pose and shape. Our model
bridges the gap between the most accurate 3D keypoint detection algorithms and
human pose and body mesh estimation with negligible performance degradation.
SkelFormer achieves robust results and outperforms others in InD scenarios.
Next, we find strong cross-dataset generalizability through OoD evaluation on
two unseen datasets, achieving competitive performance to InD multi-view so-
lutions. Additionally, our method exhibits high robustness (less than half of the
error of optimization-based solutions) in severely noisy and occluded scenarios.

2 Related Work

2.1 Keypoint Detection

The 2D keypoint estimation field has seen substantial progress in recent years.
Generally, 2D keypoint estimation models are categorized into top-down and
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bottom-up approaches, each with their trade-offs in speed and accuracy [7–9].
Due to the availability of large-scale datasets, such as COCO WholeBody [10,11]
and Halpe [12], 2D estimators have expanded into whole-body keypoints, po-
tentially impacting 3D human pose and shape estimation. Previous works have
proposed several strategies to infer the 3D keypoints of a subject, including semi-
supervised learning [13,14], temporal [15,16], and multi-view [17,18] modelling.
PoseBert [15] and volumetric Learnable Triangulation (LT) [17] are notable ex-
amples of temporal and multi-view methods, respectively, reporting 3D keypoint
estimation with an error of below pixel-level accuracy. Our method leverages the
advances in 3D keypoint estimation by using off-the-shelf models.

2.2 Pose and Shape Estimation

Regression-based methods generally predict the parameters of a body model,
e.g., SMPL [19, 20] represented by body shape and pose components. The re-
search on body pose and shape regression can be categorized into single-view and
multi-view problems. Single-view approaches generally suffer from the inherent
2D image to 3D pose ambiguities, resulting in worse performance compared to
multi-view methods. For instance, Pose2Mesh [21] uses a GraphCNN, consisting
of a mesh coarsening encoder-decoder architecture, to regress the human body
and shape from a single image. Similarly, GTRS [22] proposes a lightweight
graph-based transformer network to uplift 2D keypoints to 3D pose and shape
parameters. PyMAF [23] also explores visual encoder feature maps for pose re-
gression. We design a multi-view markerless motion capture pipeline by taking
inspiration from the advances in single-view research [1, 22].

In the context of markerless motion capture via multiple views, the majority
of methods are supervised, utilizing strategies such as collaborative learning
[24], volumetric feature aggregation [25], multi-view feature fusion via attention
[2], and pixel-aligned feedback fusion [4]. Since regression models typically rely
heavily on the availability of annotated data and the diversity of postures in the
training data, they tend to be limited to in-studio quality and do not perform
well on OoD evaluations with background and appearance shifts [4]. Although
a common solution to this problem is to pre-train the network on in-the-wild
datasets, it does not guarantee better generalizability as the neural networks
are susceptible to over-fitting and catastrophic forgetting. This is also evident
by the best estimation error of 93 mm on the in-the-wild Ski-Pose [26] dataset
reported in a recent work [2], which is three times bigger than their 33 mm error
on the Human3.6m [5] dataset. We address the OoD generalization limitation
in multi-view setups by incorporating prior knowledge of human pose into the
solution in an IK solver by training on a large set of motion capture data.

Optimization-based approaches fit the parameter of the SMPL model to
features extracted from an image, such as 2D/3D keypoints and silhouettes [3].
Simplify-x [27] introduced VPoser, a human variational pose prior trained on a
large collection of motion capture data, to reduce the complexity of the opti-
mization space. Subsequently, the majority of recent works rely on VPoser to fit
the SMPL model to 3D predictions, which is a time-consuming process that can
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take up to a day to process a one-hour-long video [3, 28]. Furthermore, varia-
tional Gaussian models are prone to mean collapse due to the prior distribution
assumption. Additionally, as the optimization process is sensitive to initializa-
tion, their potential to fit noisy data accurately is hindered [29]. To address
this challenge, several works like ProHMR [30] have proposed using regression-
based models to initialize the optimization variables. Although this approach
can speed up and improve accuracy, optimization algorithms remain suscepti-
ble to reaching undesirable local minima, especially on noisy, exotic, or unseen
poses as discussed in [29]. In summary, though capable of modelling complex
movements and interactions, optimization-based models often require careful
hyper-parameter tuning for each recording sequence, making them difficult to
use in the face of multiple constraints and impractical for fast-paced produc-
tion. We show that compared to optimization solutions, our skeletal transformer
performs more accurately with better noise and occlusion robustness.

2.3 Inverse-kinematics Models

IK is the task of obtaining body joint rotations given several pose constraints,
with applications in robotics [31] and animation [32]. In the context of human
pose and shape estimation, HybrIK [1] proposed a hybrid analytical-neural IK
solution that obtains the SMPL body rotations given the 3D keypoints estimated
from monocular images. They designed their model to disambiguate the 2D
image to 3D pose estimation by considering the shape of the human body and
breaking the joint rotations to their swing and twist components. However, to our
knowledge, IK applications of neural networks have not been explored for multi-
view pose and shape estimation. This may be due to the superior performance
of optimization methods, such as VPoser [27], yet at a high computational cost.

2.4 Skeletal Neural Networks

Previous research has reported superior performance for human motion mod-
elling [33], 3D keypoint refinement [34], and 2D to 3D uplifting [15] using skeletal
neural networks. In these approaches, the human body structure is modelled as
a skeletal graph, and the neural networks exploit the graph structure by learning
local and global pose features. Similar techniques have been proposed for hand
pose estimation, where the margins for error are much lower than human body
pose estimation [35]. Motivated by the recent success of transformers in several
fields, such as natural language processing [36] and computer vision [37], they
have been used for motion inbetweening and completion [38,39] of human poses,
achieving high-quality results. We design a transformer model to capture the full
pose state via contextualized latent representations from 3D joint positions.

3 Methodology

Overview. As illustrated in Fig. 1, our pipeline starts with a 3D keypoint esti-
mator consisting of different sub-modules for tracking, 2D keypoint estimation,



SkelFormer: Markerless 3D Pose and Shape Estimation 5

Joint 
Encoder

Shape 
Decoder

Pose 
Decoder

መ𝛽

Δ෡ΘSVD 
Head

SMPL Joints
Positional Embedding

Θ𝑚
Mean Rotations

Shape Parameter

Joint 
Regressor

Motion Capture
Data

Skeletal Transformer

𝐶𝑜𝑟𝑟𝑢𝑝𝑡

Training

Inference

Multiview Data

Tr
ac

ki
n

g

Tr
ia

n
gu

la
ti

o
n

2
D

 K
ey

p
o

in
t

D
et

ec
ti

o
n

3D Keypoints

Synthetic 3D 
Keypoints

(Θ, 𝛽) 𝐾 𝐾𝑎

𝐾

3D Keypoints

(𝑥, 𝑦, 𝑧)

Skeleton-aware
Attention Masks

Whole-body Joint 
Positional Embedding

Predicted Body 
Mesh

3D Keypoint Estimation

Fig. 1: An overview of the proposed skeletal transformer pipeline is demonstrated.
During training, noisy 3D keypoints are generated using our joint regressor, while
during inference, 3D keypoint are provided by off-the-shelf models. Then, our proposed
skeletal transformer maps the keypoints onto the SMPL pose and shape parameters.

and triangulation, for which we use off-the-shelf models. Our proposed skeletal
transformer then maps the estimated 3D keypoints onto the SMPL pose and
shape parameters. The details of each part are given below.

3.1 3D Keypoint Estimation

Human Tracking. We employ Faster R-CNN [40], a well-established object de-
tection model, to track the subjects in the input frames. Although more advanced
methods, such as 3D skeleton tracking modules for crowded scenes [41], can be
used, we did not observe any misidentification during single-person experiments.
2D Pose Estimation. To estimate the 2D joints, we employ HRNet-W48+Dark
[7, 9] trained on COCO WholeBody dataset [11]. Since this model is trained on
in-the-wild datasets, it helps with the generalizability of our pipeline.
Triangulation. We choose a simple triangulation method by employing DLT [6]
on 2D keypoints given the extrinsic camera parameters. For this purpose, we
consider 2D detection scores for assigning point occlusions.

3.2 Skeletal Transformer

Traditional IK solvers often assume noise-free constraints, which is not always
the case for observations, e.g., 3D keypoints in markerless motion capture. As
a result, iterative IK solvers generally perform better than regression models in
reaching the local minima given the ground-truth joints, at the cost of additional
computations. However, noise and occlusions can cause iterative IK solvers to
reach sub-optimal solutions. To address this issue and speed up the process,
we introduce an end-to-end learnable pose reconstruction model as illustrated in
Fig. 1. Following, we present the detailed components of our skeletal transformer.
Joint Encoder. As depicted in Fig. 1, our network consists of a 3D joint en-
coder followed by pose and shape decoders. To account for the order of the joints
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Fig. 2: Detailed architectures of our modules are presented.

in a skeleton, we first inject information about their ordering by concatenating a
positional embedding (i.e., joint ID embedding) vector to each joint input [42].
The results are then passed through an embedding layer to match the dimen-
sionality of the transformer’s hidden layers. Next, we pass the embedded data
through a series of transformer encoder blocks consisting of self-attention and
feed-forward layers, followed by layer normalization, to obtain the skeletal tokens
(see Fig. 2). To model joint occlusions, we mask out corresponding connections,
encouraging the network to use contextual information embedded within the rest
of the joints. The result is a latent representation of the joint positions, which is
passed to the following decoders.
Pose Decoder. Our pose decoder estimates the body pose given the latent
representations of joint positions. A positional embedding is fed into the decoder
to relay information about all 52 SMPL+H skeleton joints. Then, the skeletal
tokens and occlusion masks are passed through the multi-head attention layers in
the decoder. Specifically, the decoder consists of several blocks of self-attention,
multi-head attention, and feed-forward layers followed by layer normalization
(see Fig. 2). Additionally, to block the unwanted correlations between far-away
joints (e.g., left and right hands) that existed in the training set, we set the
attention weights such that each joint only attends to the other joints that are
in a distance of less than 4 nodes in the kinematic tree.
Symmetric Orthogonalization. The next step is to obtain the joint rotations
from the decoder’s output. Although previous works [27, 30, 43] have suggested
using 6-DoF representations of rotation matrices, we find that SVD symmetric
orthogonalization proposed in a recent work [44] yields more accurate results and
converges faster. Therefore, the output of the pose decoder is passed through a
fully connected residual layer that outputs a square matrix M3×3 with SVD of
UΣV T . Then, its symmetric orthogonalization Θ ∈ SO(3) is obtained by:

Θ = UΣoV T , where Σo = diag(1, 1, det(UV T )). (1)
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Shape Decoder. To obtain the shape parameters, we design a shape decoder
with a similar architecture to our pose decoder. Since the order of joints does
not affect the shape decoder, we remove the self-attention layers and set the
sequence length of the shape decoder to one, effectively reducing it to a feed-
forward network with multi-head attention (see Fig. 2).

3.3 Joint Regressor
Our goal is to train our skeletal transformer on a large collection of motion cap-
ture data consisting of samples represented by SMPL shape and pose parameters.
However, the skeleton configuration extracted from whole-body keypoint detec-
tors is not aligned with the SMPL joints. To solve the alignment issue, we use
a joint regressor to convert SMPL representations to our desired skeletal con-
figurations. Currently available joint regressors have been reported to be either
inaccurate [45], or simply obtained by selecting vertices on the surface of the
body, which is not biomechanically correct nor in accordance with existing body
models. Therefore, we propose a novel joint regressor and training scheme using
a small amount of synthetic data to align the SMPL with the 3D keypoints.

The joint regressor, defined as a linear layer K = J V , is trained to map
the body mesh vertices V ∈ R6890×3 to 3D keypoints K ∈ RJ×3, where J is
the number of joints in the 3D keypoint configuration. In order to train the
joint regressor, we randomly take 10,000 SMPL body samples from the AMASS
dataset [46] and render them from four orthogonal views after removing the root
translation and adding random root rotations augmentation. Next, following
the process of Sec. 3, we use HRNet-W48+Dark [7, 9] to estimate whole-body
keypoints followed by DLT triangulation for obtaining 3D keypoints.

To encourage sparsity and avoid out-of-body predictions, previous works [45]
have suggested using an L2 regularization on the joint regressor with the goal of
(a) enforcing a sum of 1 for vertex weights of each 3D joint; and (b) encouraging
all of the weights of the joint regressor to lie between 0 and 1. However, doing
so creates a trade-off between regularization and accuracy. To solve this issue,
we apply a temperature-scaled Softmax function over the trainable parameters
of the joint regressor ϕ, thus automatically satisfying both constraints. Doing so
also gives us control over the vertex sparsity for each of the 3D joints. The joint
regressor’s weights for the ith keypoint are computed as:

Ji(ϕ) = eϕi/T∑J
j=1 eϕj/T

, (2)

where T controls the sharpness of the distribution of the vertex weights. We use
an L-BFGS optimizer [47] to increase the training efficiency. We empirically set
the temperature to T = 10 so that 3 to 10 vertices contribute to each joint.

3.4 Data Preparation
We extract pairs of 3D keypoints K (using our joint regressor), body joint rota-
tion matrices Θ ∈ R52×3×3, and shape parameters β ∈ R16 from human motion
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capture data. Next, we measure the average joint rotations across the dataset
to normalize Θ. As some layers in the skeletal transformer share weights across
all the joints, the symmetry of the left and right rotations is important. Yet, the
mean pose Θm provided and used in previous works [30,43,48] is not symmetri-
cal. To address this, we add the mediolateral mirrored samples to the dataset and
use quaternion averaging as described in [49] to measure Θm, subsequently nor-
malizing the pose by ∆Θ = Θ−1

m Θ. During training, we apply a range of online
augmentations to diversify the data and enhance our model’s robustness. The
augmentations include joint occlusions, body rotation, keypoint noise addition,
shape augmentation, outlier addition, and mediolateral mirroring.

3.5 Training

To train our skeletal transformer, we feed the model with augmented data Ka

to obtain pose and shape parameters, which are then passed through the SMPL
Forward Kinematics (FK) layer. We then use a combination of rotational, po-
sitional, and shape losses to leverage different scopes and granularities to help
with training [50]. Our final loss is calculated as the sum of the following losses.
Rotation Loss. Our rotational loss is the sum of the global and local geodesic
distances between the predicted Θ̂ and ground-truth rotations Θ of every joint:

LR(Θ, Θ̂) = arccos
(

tr(ΘΘ̂⊺) − 1
2

)
. (3)

Position Loss. Our model uses the SMPL FK layer to obtain the keypoints
K̂ and vertices V̂ . We then define a positional loss using LP = L1;s(K̂, K) +
L1;s(V̂ , V ), where the L1;s represents a smoothed L1 loss [51]. This loss can be
seen as a combination of L1 and L2 distances, which is less susceptible to outliers
than L2, and it has less near-zero penalty than the L1 distance.
Shape Loss. Finally, we minimize the LS = L2(β̂, β) distance between the
estimated β̂ and ground-truth shape parameters β to train our shape decoder.

4 Experiments

4.1 Datasets

AMASS. The Archive of Motion Capture as Surface Shapes (AMASS) [46] is
a collection of 3D human pose and shape information collected from multiple
motion capture databases. It contains over 40 hours of motion capture data from
more than 300 subjects and spans over 11,000 actions. We follow the standard
train, test, and validation splits used in prior works [3, 27]. This dataset is used
solely to train the skeletal transformer IK solver.
Human3.6m. Human3.6m [5] is the standard benchmark for evaluating 3D hu-
man pose, shape, and body estimation in multi-view and single-view approaches.
Following previous works [52], we perform our evaluations using Protocol-I,
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where the root-centred MPJPE and PA-MPJPE on subjects 9 and 11 are mea-
sured. We use this dataset for InD evaluation of our method.
RICH. Real scenes, Interaction, Contact and Humans (RICH) dataset [53] is a
recently published dataset of multi-view videos with accurate markerless motion-
captured bodies and scenes. The test set contains one withheld scene and 7
unseen subjects in 52 scenarios, captured using four cameras. We use this dataset
for OoD evaluation of our method in outdoor settings.
MPI-INF-3DHP. The Max Planck Institute for Informatics 3D Human Pose
dataset (MPI-INF-3DHP) [54] is a collection of over 1.5 million frames captured
from eight angles, featuring eight actors performing various actions like sitting,
dancing, and exercising. We follow the previous works by evaluating our model
on subject 8 of the training set [25,55]. We use this dataset for OoD evaluations.

4.2 Evaluation Metrics

To evaluate the performance of our method, we employ standard evaluation met-
rics in 3D pose estimation literature. Mean-Per-Joint-Position-Error (MPJPE)
measures the Euclidean distance between the estimated joint positions and
the ground-truth joint positions, averaged over all joints in the skeleton. PA-
MPJPE is an extension of MPJPE, where a rigid alignment between the esti-
mated and ground-truth keypoints is applied prior to error measurement. This
metric shows how well the skeleton is estimated, regardless of scaling and ro-
tation. Additionally, we report MPVPE and PA-MPVPE to show the error
between ground-truth and predicted vertices of body mesh. Additionally, we re-
port AUC and PCK at a threshold of 150 mm according to MPI-INF-3DHP [54]
evaluation criteria. Finally, Rotation Error is measured by the geodesic dis-
tance between the ground-truth and predicted poses.

4.3 Implementation Details

Hyper-parameters. We select 65 joints from the 133 joints of the whole-body
skeleton configuration, excluding most facial landmarks while keeping the eyes,
ears, and nose. We choose two transformer blocks for the encoder and each of the
decoders. As illustrated in Fig. 2, We use a positional embedding of size 64 in
the encoder and decoder while setting hidden layer dimensions to 128 within all
layers. The shape and pose decoder heads use 1024-dimensional residual layers.
Optimization. We train our model using AdamW optimizer [56] with a batch
size of 1024 on an NVIDIA A4000 GPU. We chose a learning rate of 1e-3, which
is warmed up with a factor of 1e-4 for the first 2000 iterations and gradually
reduced with a cosine annealing scheduler over 50000 iterations until it reaches
1e-7. The training of the network takes less than 18 hours to complete.
Mirror Test. Similar to the flipping test performed in 2D keypoint estima-
tion methods [7,37], we perform a mirroring test during inference to reduce the
model’s biases towards left and right body parts.
Computation Cost. Our model contains 6.631 M parameters with 159.482 M
Floating Point Operations (FLOPs) for a single input. As a result, our skeletal
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Table 1: The comparison of our method in InD settings against prior multi-view works
on the full test set of the Human3.6m dataset. * denotes the results from using ground-
truth 3D keypoints as input

Method MPJPE↓ PA-MPJPE↓ Output
CPN+DLT [57] 32.1 27.8 Joint Pos. Only
LT [17] 20.7 17.0 Joint Pos. Only
Pose2Mesh [21]* 29.0 23.0 Mesh Only
Huang et al. [58] 58.2 47.1 Joint Rot.+Mesh
Shin and Halilaj (SPIN4,cal) [25] 49.8 35.4 Joint Rot.+Mesh
Shin and Halilaj (main) [25] 46.9 32.5 Joint Rot.+Mesh
Gong et al. [59] 53.8 42.4 Joint Rot.+Mesh
Jiang et al. [60] 50.2 37.3 Joint Rot.+Mesh
Jia et al. [4] 33.0 26.9 Joint Rot.+Mesh
SMPLify-X (LT) [27] 26.3 21.2 Joint Rot.+Mesh
SkelFormer (CPN) 33.5 27.8 Joint Rot.+Mesh
SkelFormer (LT) 25.2 20.6 Joint Rot.+Mesh

Table 2: Comparison of our method in OoD settings against prior works.

Method MPVPE↓ MPJPE↓ PA-MPJPE↓ PCK↑ AUC↑ OoD
RICH Dataset

METRO [61] 134.5 129.6 - - - ✓
METRO [61] 107.9 98.8 - - - ✗
SA-HMR [62] 103.0 93.9 - - - ✗
IPMAN-R [63] 89.9 79.0 47.6 - - ✗
SPIN [43] 129.5 112.2 71.5 - - ✓
PARE [64] 125.0 107.0 73.1 - - ✓
CLIFF [65] 122.3 107.0 67.2 - - ✓
SkelFormer (HRNet) 39.9 44.2 35.6 - - ✓

MPI-INF-3DHP Dataset
Liang and Lin [55] - - 59.0 95.0 65.0 ✗
Shin and Halilaj [25] - - 50.2 97.4 65.5 ✗
Jia et al. [4] - - 48.4 98.6 67.3 ✗
SkelFormer (HRNet) - - 54.8 97.5 67.4 ✓

transformer can solve the IK problem in 66 ms for a batch size of 512 using
approximately 4G of GPU memory. Consequently, our SkelFormer pipeline takes
274 ms to predict body pose and shape parameters from a four-camera frame.

4.4 Results

InD Testing. To evaluate SkelFormer, we first compare its performance to prior
works on the Human3.6m [5] dataset. In this experiment, most benchmarks pre-
train their models on multiple datasets and fine-tune them on the Human3.6m
training set. Accordingly, we report the performance of our model using keypoint
estimators, i.e., CPN [57] and LT [17], trained on Human3.6m dataset (InD). To
this end, we use 3D predictions from CPN (followed by DLT triangulation [6])
and LT, both of which are trained following the standard evaluation protocol [5].
Moreover, we train our skeletal transformer on the AMASS dataset [46] using
a 17-joint configuration as per Human3.6M. Delving deep into the results in
Tab. 1, we observe that our method outperforms the best regression model [4].
Additionally, SkelFormer outperforms optimization solutions from multi-view
2D keypoints, 3D keypoint [58], and SMPLify-X (LT) [27]. A notable solution is
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Fig. 3: A visual comparison with the pseudo-ground-truth from [52] is provided, pre-
senting the realism and accuracy of our SkelFormer.

Pose2Mesh [21], another regression-based approach that exploits the 3D ground
truth as input. However, SkelFormer outperform Pose2Mesh despite not using
the ground-truth information. Finally, although not directly comparable, our
method achieves the closest performance to solutions that only predict joint
positions, namely, LT [17] and CPN+DLT [57].
OoD Testing. Next, to test our method in OoD settings, we use HRNet-
W48+Dark [7, 9] as the keypoint extractor, which has not been trained on the
RICH [53] or the MPI-INF-3DHP [54] datasets. Moreover, we keep our entire
pipeline frozen and do not fine-tune any of its components on any portion of these
datasets. The results are presented in Tab. 2. It should be noted that while prior
works on the RICH dataset are monocular pose estimation approaches, all prior
works on MPI-INF-3DHP are multi-view solutions and use all available views.
On the RICH dataset, Tab. 2 shows that other solutions, such as SPIN [43]
and CLIFF [65], suffer greatly in OoD setups (obtaining 172% and 127% addi-
tional error w.r.t. their InD performance on Human3.6m dataset). In contrast,
our method shows competitive results compared to InD solutions by outper-
forming prior works on RICH while showing relatively minor degradation on
the MPI-INF-3DHP dataset. Finally, we demonstrate the fitting quality of our
model compared to the pseudo ground truth [52] on the Human3.6m and the
MPI-INF-3DHP datasets in Fig. 3, showing improvements in the feet and hands.
Ablation Study. We test the importance of different network components and
report the results in Tab. 3. Given our goal of increasing generalizability in the
presence of noise and occlusions, we conduct experiments on motion capture data
from the AMASS [46] testing set at the presence of 20% occlusion and additive
Gaussian noise with σ = 20 mm. First, we demonstrate the effectiveness of
symmetric orthogonalization by replacing our SVD operation with the commonly
used 6-DoF representation, showing a drop of 0.8 mm and 0.19° of MPVPE
and rotational error when SVD is removed. Next, we experiment with different
combinations of local and global (after FK) rotational loss functions to train
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Table 3: Ablation Study results in the presence of 20% occlusion and a Gaussian noise
of σ = 20 mm.

Experiments MPVPE↓ PA-MPVPE↓ Rot. Error↓
SVD Symmetric Orthogonalization 18.6 12.1 2.94
6-DoF Symmetric Orthogonalization 19.2 12.6 3.13
Local Rot. Loss 19.9 13.3 3.01
Global Rot. Loss 19.3 13.2 3.63
Global+Local Rot. Loss 18.6 12.1 2.94
Part-based Decoder Att. Weights 18.8 12.1 2.96
d = 1 Decoder Att. Weights 19.6 12.8 2.97
d = 2 Decoder Att. Weights 19.1 12.4 2.93
d = 3 Decoder Att. Weights 19.3 12.6 2.96
d = 4 Decoder Att. Weights 18.6 12.1 2.94
d = 5 Decoder Att. Weights 18.9 12.6 2.97
w/o Decoder Att. Weights 19.7 12.8 3.04
w/o Rotation Normalization 19.5 13.1 3.01
w/o Mirror Test 27.7 19.7 3.56
w/o Shape Aug. 19.8 12.8 2.92

(a) VPoser on our joint regressor (b) VPoser on Moon et al. 2022 joint regressor

Fig. 4: The fitting performance of VPoser is demonstrated while using (a) our proposed
joint regressor; and (b) the joint regressor from [52].

our model. We observe that combining global and local rotation losses results
in a better performance. Next, we showcase the effectiveness of our decoder
masking strategy using the attention weights in three experiments: i) part-based
experiment, where we restrict the attention within upper right, upper left, lower
right, lower left, and center regions of the body; ii) node distance experiments,
where we restrict the attention based on the node distance d in the skeleton
kinematic tree with values between 1 and 5; and iii) without skeleton-aware
attention masks, where we allow each joint to attend to any other joints in the
decoder. We observe that the best results are obtained for d = 4, improving over
the vanilla transformer decoder by 1.1 mm MPVPE and 0.2° rotation error.
Lastly, we show the impact of rotation normalization, mirror testing, and shape
augmentation, where a significant drop in performance is seen in the individual
absence of each of these components, highlighting their significance. Finally,
we perform a qualitative experiment on our joint regressor. To this end, we
use VPoser [27] to fit onto 3D keypoints using our joint regressor and the one
provided in prior works [27] on Human3.6m dataset [5]. In Fig. 4, we show the
visual fidelity of the effect of our joint regressor in comparison to [52], specifically,
in better fitting to the feet regions.



SkelFormer: Markerless 3D Pose and Shape Estimation 13

0 10 20 30 40 50
Noise  (mm) 

0

25

50

75

100

125

150

175

200

M
PJ

PE
 (m

m
)

Performance against noise
Our Skeletal Transformer
VPoser
VPoser-t
GT noise

0 10 20 30 40 50 end-points
Occlusion %

0

25

50

75

100

125

150

175

200

M
PJ

PE
 (m

m
)

Performance against occlusion

Fig. 5: Robustness of our skeletal transformer is highlighted in the presence of different
levels of noise and occlusion by comparing it against VPoser and VPoser-t.

Robustness to Noise and Occlusions. To evaluate the performance of our
model on motion capture data, we perform experiments by simulating noise
and occlusion. For these experiments, we compare our skeletal transformer with
VPoser [27] and its temporal version, VPoser-t [3], which tries to maximize tem-
poral consistency during optimization. Figure 5 demonstrates the performance
of different models on the AMASS [46] testing set. In the first experiment, we
introduce varying noise levels to the input data and evaluate the robustness
of our method. More specifically, Gaussian noise with varying standard devi-
ations up to 50 mm is added to the input, effectively increasing the MPJPE
of ground truth up to 80 mm (referred to as GT noise). However, our skeletal
transformer predicts body pose and shape parameters, which result in lower er-
ror after σ = 15 mm. Additionally, its performance only degrades by 19.7 mm
at maximum noise level, while VPoser fails to predict less noisy poses. Lastly,
by comparing our method to a temporal model (VPoser-t), we demonstrate the
model’s robustness to noisy scenarios. Next, we report the performance of our
model in the presence of occlusions, where each joint is randomly masked with
varying occlusion amounts of up to 50%. Figure 5 shows that the performance
of our skeletal transformer barely changes between 0 and 50% occlusion, thus
showing the model’s capability to exploit local and global joint information. In
contrast, VPoser’s performance drops by more than 20 mm in the presence of
only 20% occlusion. We finally report the performance in an extreme occlusion
scenario, where only 7 end-point keypoints are provided. Our model outperforms
other solutions while maintaining a reasonable accuracy.
Qualitative Assessments. Figure 6 demonstrates the visual quality of SkelFormer
on RICH [53] dataset in equally-sampled frames from the testing set. Our method
yields the correct pose and shape with high overlaps with the subject.

5 Conclusion

In this paper, we presented SkelFormer, a novel multi-stage pipeline consisting
of keypoint estimators and a skeletal transformer for markerless human motion
capture. Our method leverages large amounts of motion capture data to ad-
dress the poor generalization of multi-view human shape and pose estimation
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Fig. 6: Sample results on the RICH dataset are presented.

approaches while outperforming optimization approaches in accuracy. Through
extensive experiments, we demonstrated the effectiveness of SkelFormer in sev-
eral challenging conditions, including InD and OoD settings. Specifically, We
achieve the best results in InD experiments among prior multi-view approaches
and show competitive OoD performance, demonstrating the generalization of our
pipeline. Furthermore, we show the effectiveness of the proposed elements in our
skeletal transformer through our ablation study. Finally, our single-frame skele-
tal transformer exhibits higher noise and occlusion robustness than optimization
approaches that rely on temporal data.
Future Work. The major limitation of this work is the accumulation of errors in
the multi-stage pipeline. Although our network mitigates jitters and occlusions
better than other approaches, it is still prone to artifacts caused by mediolateral
mix-ups and incorrect tracking. More accurate human trackers [40,41], 2D key-
point estimators, and triangulation techniques may be explored to remedy such
issues. Another promising direction is to use SkelFormer to initialize generative
models such as DMMR [28] and HuMoR [3] to further refine the motions.



SkelFormer: Markerless 3D Pose and Shape Estimation 15

Acknowledgment

This work was partially funded by Mitacs through the Accelerate program.

References

1. J. Li, C. Xu, Z. Chen, S. Bian, L. Yang, and C. Lu, “Hybrik: A hybrid analytical-
neural inverse kinematics solution for 3d human pose and shape estimation,” in
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2021, pp. 3383–3393.

2. Z. Yu, L. Zhang, Y. Xu, C. Tang, L. Tran, C. Keskin, and H. S. Park, “Multiview
human body reconstruction from uncalibrated cameras,” in Advances in Neural
Information Processing Systems (NeurIPS), 2022.

3. D. Rempe, T. Birdal, A. Hertzmann, J. Yang, S. Sridhar, and L. J. Guibas, “Humor:
3d human motion model for robust pose estimation,” in IEEE/CVF International
Conference on Computer Vision (ICCV), 2021, pp. 11 488–11 499.

4. K. Jia, H. Zhang, L. An, and Y. Liu, “Delving deep into pixel alignment feature for
accurate multi-view human mesh recovery,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 37, no. 1, 2023, pp. 989–997.

5. C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu, “Human3.6m: Large scale
datasets and predictive methods for 3d human sensing in natural environments,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36, no. 7,
pp. 1325–1339, 2013.

6. R. Hartley and A. Zisserman, Multiple view geometry in computer vision, 2nd ed.
Cambridge University Press, 2004.

7. K. Sun, B. Xiao, D. Liu, and J. Wang, “Deep high-resolution representation learn-
ing for human pose estimation,” in IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2019, pp. 5693–5703.

8. Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2d pose esti-
mation using part affinity fields,” in IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2017, pp. 7291–7299.

9. F. Zhang, X. Zhu, H. Dai, M. Ye, and C. Zhu, “Distribution-aware coordinate rep-
resentation for human pose estimation,” in IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2020, pp. 7093–7102.

10. S. Jin, L. Xu, J. Xu, C. Wang, W. Liu, C. Qian, W. Ouyang, and P. Luo, “Whole-
body human pose estimation in the wild,” in European Conference on Computer
Vision (ECCV). Springer, 2020, pp. 196–214.

11. T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick, “Microsoft coco: Common objects in context,” in European
Conference on Computer Vision (ECCV). Springer, 2014, pp. 740–755.

12. H.-S. Fang, J. Li, H. Tang, C. Xu, H. Zhu, Y. Xiu, Y.-L. Li, and C. Lu, “Alpha-
pose: Whole-body regional multi-person pose estimation and tracking in real-time,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

13. R. Mitra, N. B. Gundavarapu, A. Sharma, and A. Jain, “Multiview-consistent semi-
supervised learning for 3d human pose estimation,” in IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2020, pp. 6907–6916.

14. V. Davoodnia, S. Ghorbani, and A. Etemad, “Estimating pose from pressure
data for smart beds with deep image-based pose estimators,” Applied Intelligence,
vol. 52, no. 2, pp. 2119–2133, 2022.



16 V. Davoodnia et al.

15. W. Zhu, X. Ma, Z. Liu, L. Liu, W. Wu, and Y. Wang, “Motionbert: A unified per-
spective on learning human motion representations,” in IEEE/CVF International
Conference on Computer Vision (ICCV). IEEE, 2023, pp. 15 085–15 099.

16. V. Davoodnia and A. Etemad, “Human pose estimation from ambiguous pressure
recordings with spatio-temporal masked transformers,” in IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), 2023, pp. 1–5.

17. K. Iskakov, E. Burkov, V. Lempitsky, and Y. Malkov, “Learnable triangulation
of human pose,” in IEEE/CVF International Conference on Computer Vision
(ICCV), 2019, pp. 7718–7727.

18. Z. Zhang, C. Wang, W. Qiu, W. Qin, and W. Zeng, “Adafuse: Adaptive multiview
fusion for accurate human pose estimation in the wild,” International Journal of
Computer Vision, vol. 129, pp. 703–718, 2021.

19. M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black, “Smpl: A
skinned multi-person linear model,” ACM Transactions on Graphics, vol. 34, no. 6,
pp. 1–16, 2015.

20. J. Romero, D. Tzionas, and M. J. Black, “Embodied hands: Modeling and capturing
hands and bodies together,” ACM Transactions on Graphics, vol. 36, no. 6, pp.
1–17, 2017.

21. H. Choi, G. Moon, and K. M. Lee, “Pose2mesh: Graph convolutional network for
3d human pose and mesh recovery from a 2d human pose,” in European Conference
on Computer Vision (ECCV). Springer, 2020, pp. 769–787.

22. C. Zheng, M. Mendieta, P. Wang, A. Lu, and C. Chen, “A lightweight graph
transformer network for human mesh reconstruction from 2d human pose,” in
ACM International Conference on Multimedia (ACMMM), 2022, pp. 5496–5507.

23. H. Zhang, Y. Tian, X. Zhou, W. Ouyang, Y. Liu, L. Wang, and Z. Sun, “Pymaf: 3d
human pose and shape regression with pyramidal mesh alignment feedback loop,”
in IEEE/CVF International Conference on Computer Vision (ICCV), 2021, pp.
11 446–11 456.

24. Z. Li, M. Oskarsson, and A. Heyden, “3d human pose and shape estimation through
collaborative learning and multi-view model-fitting,” in IEEE/CVF Winter Con-
ference on Applications of Computer Vision (WACV), 2021, pp. 1888–1897.

25. S. Shin and E. Halilaj, “Multi-view human pose and shape estimation using learn-
able volumetric aggregation,” arXiv preprint arXiv:2011.13427, 2020.

26. J. Spörri, “Reasearch dedicated to sports injury prevention-the’sequence of pre-
vention’on the example of alpine ski racing,” Habilitation with Venia Docendi in
Biomechanics, vol. 1, no. 2, p. 7, 2016.

27. G. Pavlakos, V. Choutas, N. Ghorbani, T. Bolkart, A. A. Osman, D. Tzionas, and
M. J. Black, “Expressive body capture: 3d hands, face, and body from a single
image,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2019, pp. 10 975–10 985.

28. B. Huang, Y. Shu, T. Zhang, and Y. Wang, “Dynamic multi-person mesh recovery
from uncalibrated multi-view cameras,” in IEEE International Conference on 3D
Vision (3DV), 2021, pp. 710–720.

29. L. Metz, C. D. Freeman, S. S. Schoenholz, and T. Kachman, “Gradients are not
all you need,” arXiv preprint arXiv:2111.05803, 2021.

30. N. Kolotouros, G. Pavlakos, D. Jayaraman, and K. Daniilidis, “Probabilistic mod-
eling for human mesh recovery,” in IEEE/CVF International Conference on Com-
puter Vision (ICCV), 2021, pp. 11 605–11 614.

31. A. Csiszar, J. Eilers, and A. Verl, “On solving the inverse kinematics problem using
neural networks,” in IEEE International Conference on Mechatronics and Machine
Vision in Practice (M2VIP), 2017, pp. 1–6.



SkelFormer: Markerless 3D Pose and Shape Estimation 17

32. R. Villegas, J. Yang, D. Ceylan, and H. Lee, “Neural kinematic networks for un-
supervised motion retargetting,” in IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2018, pp. 8639–8648.

33. S. Raab, I. Leibovitch, P. Li, K. Aberman, O. Sorkine-Hornung, and D. Cohen-Or,
“Modi: Unconditional motion synthesis from diverse data,” in IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 13 873–
13 883.

34. T. Jiang, N. C. Camgoz, and R. Bowden, “Skeletor: Skeletal transformers for robust
body-pose estimation,” in IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2021, pp. 3394–3402.

35. A. Zeng, X. Sun, L. Yang, N. Zhao, M. Liu, and Q. Xu, “Learning skeletal graph
neural networks for hard 3d pose estimation,” in IEEE/CVF International Con-
ference on Computer Vision (ICCV), 2021, pp. 11 436–11 445.

36. L. Floridi and M. Chiriatti, “Gpt-3: Its nature, scope, limits, and consequences,”
Minds and Machines, vol. 30, pp. 681–694, 2020.

37. Y. Xu, J. Zhang, Q. Zhang, and D. Tao, “Vitpose: Simple vision transformer base-
lines for human pose estimation,” Advances in Neural Information Processing Sys-
tems (NeurIPS), vol. 35, pp. 38 571–38 584, 2022.

38. Y. Duan, Y. Lin, Z. Zou, Y. Yuan, Z. Qian, and B. Zhang, “A unified framework for
real time motion completion,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 36, 2022, pp. 4459–4467.

39. J. Qin, Y. Zheng, and K. Zhou, “Motion in-betweening via two-stage transformers,”
ACM Transactions on Graphics, vol. 41, no. 6, pp. 1–16, 2022.

40. S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object de-
tection with region proposal networks,” Advances in Neural Information Processing
Systems (NeurIPS), vol. 28, 2015.

41. L. Bridgeman, M. Volino, J.-Y. Guillemaut, and A. Hilton, “Multi-person 3d pose
estimation and tracking in sports,” in IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) workshops, 2019.

42. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin, “Attention is all you need,” Advances in Neural Information
Processing Systems (NeurIPS), vol. 30, 2017.

43. N. Kolotouros, G. Pavlakos, M. J. Black, and K. Daniilidis, “Learning to recon-
struct 3d human pose and shape via model-fitting in the loop,” in IEEE/CVF
International Conference on Computer Vision (ICCV), 2019, pp. 2252–2261.

44. J. Levinson, C. Esteves, K. Chen, N. Snavely, A. Kanazawa, A. Rostamizadeh, and
A. Makadia, “An analysis of svd for deep rotation estimation,” Advances in Neural
Information Processing Systems (NeurIPS), vol. 33, pp. 22 554–22 565, 2020.

45. E. Hedlin, H. Rhodin, and K. M. Yi, “A simple method to boost human pose
estimation accuracy by correcting the joint regressor for the human3. 6m dataset,”
in IEEE Conference on Robots and Vision (CRV), 2022, pp. 1–7.

46. N. Mahmood, N. Ghorbani, N. F. Troje, G. Pons-Moll, and M. J. Black, “Amass:
Archive of motion capture as surface shapes,” in IEEE/CVF International Con-
ference on Computer Vision (ICCV), 2019, pp. 5442–5451.

47. D. C. Liu and J. Nocedal, “On the limited memory bfgs method for large scale
optimization,” Mathematical Programming, vol. 45, no. 1-3, pp. 503–528, 1989.

48. A. Kanazawa, M. J. Black, D. W. Jacobs, and J. Malik, “End-to-end recovery
of human shape and pose,” in IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2018, pp. 7122–7131.

49. F. L. Markley, Y. Cheng, J. L. Crassidis, and Y. Oshman, “Averaging quaternions,”
Journal of Guidance, Control, and Dynamics, vol. 30, no. 4, pp. 1193–1197, 2007.



18 V. Davoodnia et al.

50. A. Sengupta, I. Budvytis, and R. Cipolla, “Synthetic training for accurate 3d
human pose and shape estimation in the wild,” arXiv preprint arXiv:2009.10013,
2020.

51. R. Girshick, “Fast r-cnn,” in IEEE/CVF International Conference on Computer
Vision (ICCV), 2015, pp. 1440–1448.

52. G. Moon, H. Choi, and K. M. Lee, “Neuralannot: Neural annotator for 3d human
mesh training sets,” in IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2022, pp. 2299–2307.

53. C.-H. P. Huang, H. Yi, M. Höschle, M. Safroshkin, T. Alexiadis, S. Polikovsky,
D. Scharstein, and M. J. Black, “Capturing and inferring dense full-body human-
scene contact,” in IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2022, pp. 13 274–13 285.

54. D. Mehta, H. Rhodin, D. Casas, P. Fua, O. Sotnychenko, W. Xu, and C. Theobalt,
“Monocular 3d human pose estimation in the wild using improved cnn supervision,”
in IEEE International Conference on 3D Vision (3DV), 2017, pp. 506–516.

55. J. Liang and M. C. Lin, “Shape-aware human pose and shape reconstruction using
multi-view images,” in IEEE/CVF International Conference on Computer Vision
(ICCV), 2019, pp. 4352–4362.

56. I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in Interna-
tional Conference on Learning Representations (ICLR), 2018.

57. Y. Chen, Z. Wang, Y. Peng, Z. Zhang, G. Yu, and J. Sun, “Cascaded pyramid
network for multi-person pose estimation,” in IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2018, pp. 7103–7112.

58. Y. Huang, F. Bogo, C. Lassner, A. Kanazawa, P. V. Gehler, J. Romero, I. Akhter,
and M. J. Black, “Towards accurate marker-less human shape and pose estimation
over time,” in IEEE International Conference on 3D Vision (3DV), 2017, pp. 421–
430.

59. X. Gong, L. Song, M. Zheng, B. Planche, T. Chen, J. Yuan, D. Doermann, and
Z. Wu, “Progressive multi-view human mesh recovery with self-supervision,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, no. 1, 2023,
pp. 676–684.

60. X. Jiang, X. Nie, Z. Wang, L. Liu, and S. Liu, “Multi-view human body mesh
translator,” arXiv preprint arXiv:2210.01886, 2022.

61. K. Lin, L. Wang, and Z. Liu, “End-to-end human pose and mesh reconstruction
with transformers,” in IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2021, pp. 1954–1963.

62. Z. Shen, Z. Cen, S. Peng, Q. Shuai, H. Bao, and X. Zhou, “Learning human mesh
recovery in 3d scenes,” in IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2023, pp. 17 038–17 047.

63. S. Tripathi, L. Müller, C.-H. P. Huang, O. Taheri, M. J. Black, and D. Tzionas,
“3d human pose estimation via intuitive physics,” in IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2023, pp. 4713–4725.

64. M. Kocabas, C.-H. P. Huang, O. Hilliges, and M. J. Black, “Pare: Part attention
regressor for 3d human body estimation,” in IEEE/CVF International Conference
on Computer Vision (ICCV), 2021, pp. 11 127–11 137.

65. Z. Li, J. Liu, Z. Zhang, S. Xu, and Y. Yan, “Cliff: Carrying location information
in full frames into human pose and shape estimation,” in European Conference on
Computer Vision (ECCV). Springer, 2022, pp. 590–606.


	SkelFormer: Markerless 3D Pose and Shape Estimation using Skeletal Transformers

